Thermodynamics of the Hydrogen Sulfide-Water System Relevant to the Dual Temperature Process for the Production of Heavy Water

HERBERT A. POHL ${ }^{1}$
Explosives Department, Atomic Energy Division, E.I. du Pont de Nemours \& Co., Inc.,Wilmington, Del.

T

 distribuater makes use of the variation in hydrogen isotope depends upon the shift in equilibrium of the isotope exchange reaction:$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{HDS}(\mathrm{~g})=\mathrm{HDO}(\mathrm{l})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) ;
$$

$$
\Delta H_{e}^{0}=-593 \mathrm{cal} . / \mathrm{gram} \text { atom } \mathrm{D} \text { (theor.) }
$$

The wider the operating temperature interval, the greater the change in isotopic composition of the paired hot and cold towers, and the greater the yield of the process. The practical, upper operating temperature limit is set by economic factors at about $140^{\circ} \mathrm{C}$. The lower operating temperature limit is set by the temperature of formation of an ice-like $\mathrm{H}_{2} \mathrm{~S}$ hydrate ($27.4^{\circ} \mathrm{C}$. at 250 p.s.i.a.; $28.8^{\circ} \mathrm{C}$. at 300 p.s.i.a., Figure 1).

In the case of countercurrent processes where the enthalpies of the two streams are nearly equal, unusual plate-to-plate temperature changes may occur within the system (2). For this reason the following detailed analysis has been made of relevant thermodynamic data for the $\mathrm{H}_{2} \mathrm{~S}-\mathrm{H}_{2} \mathrm{O}$ system. In the countercurrent dual-temperature process such normally small enthalpy effects as the nonideality of $\mathrm{H}_{2} \mathrm{~S}$ gas (Joule-Thompson cooling) and the above reaction play major roles.

DISCUSSION

Thermodynamic Properties of Gaseous and Aqueous $\mathrm{H}_{2} \mathrm{~S}$. Enthalpy of Wet $\mathrm{H}_{2} \mathrm{~S}$. The enthalpy of $\mathrm{H}_{2} \mathrm{~S}$ saturated with water vapor is dependent on temperature and pressure. Changes in enthalpy are evaluated as the gas proceeds from one set of conditions to another in the towers.
$\Delta H_{G}=$ enthalpy to bring 1 mole of pure $\mathrm{H}_{2} \mathrm{~S}$ gas from $25^{\circ} \mathrm{C}$. to T, plus enthalpy change in compressing it from 1 atm. to p, plus enthalpy change in raising h moles of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ to T from $25^{\circ} \mathrm{C}$., plus enthalpy change of raising h moles of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ from the pressure of its own vapor at $25^{\circ} \mathrm{C}$. to the pressure of its vapor at temperature T, plus heat of vaporization of h moles of $\mathrm{H}_{2} \mathrm{O}$ at T and p.

$$
\begin{aligned}
\Delta H_{G}=C_{g}(T-25) & +\int_{p=1 \mathrm{~atm} .}^{p=p} \quad\left(\frac{\partial H_{g}}{\partial p}\right)_{T} d p \\
& +C_{\omega} \times h(T-25)+h \int_{p_{j}^{\prime}}^{p^{\prime}}\left(\frac{\partial H_{w}}{\partial p}\right)_{T} d p^{\prime}+h \times \Delta H_{v}
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{g}=\text { mean molar heat capacity of pure } \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \text { in interval } \\
& 25^{\circ} \mathrm{C} . \text { to } T \\
& C_{u}=\text { mean molar heat capacity of } \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \text { in interval } 25^{\circ} \mathrm{C} . \\
& \text { to } T \\
& \begin{aligned}
\Delta H_{\bullet} & =\text { molar heat of vaporization of } \mathrm{H}_{2} \mathrm{O} \text { at temperature } T \\
T & =\text { vapor temperature, }{ }^{\circ} \mathrm{C} . \\
h & =\text { humidity of } \mathrm{H}_{2} \mathrm{~S}=\text { mole } \mathrm{H}_{2} \mathrm{O} \text { per mole } \mathrm{H}_{2} \mathrm{~S}
\end{aligned} \\
& \text { 'Present address, Plastic Laboratory, Princeton University, } \\
& \text { Princeton, N. J. }
\end{aligned}
$$

Figure 1. Phase diagram for $\mathrm{H}_{2} \mathrm{~S}-\mathrm{H}_{2} \mathrm{O}$ system
$H_{8}=$ enthalpy per mole of pure $H_{2} \mathrm{~S}$ gas
(different from $H_{G}=$ enthalpy per mole of $H_{2} \mathrm{~S}$ containing moisture) $H_{w}=$ enthalpy of liquid water
For present calculations there is needed $\left[\partial H_{G} / \partial T\right]_{p}$ and $\left[\partial H_{\mathrm{G}} / \partial p\right]_{\mathrm{T}}$. Since, in the region of interest, C_{w} and $\left(\partial H_{g} / \partial p\right)_{\mathrm{T}}$ as shown later are essentially independent of T and p, and C_{B} and ΔH_{v} are essentially independent of p while $\left(\partial H_{w} / \partial p\right)_{T}$ is small and negligible for present purposes,
$\Delta H_{G}=C_{g}(T-25)+\left(\frac{\partial H_{g}}{\partial p}\right)_{T}(p-14.7)+C_{w} \times h(T-25)+h \times \Delta H_{v}$
and

$$
\begin{aligned}
& C_{G}=\left[\frac{\partial H_{G}}{\partial T_{k}}\right]_{p}=C_{g}+\left(\frac{\partial C_{g}}{\partial T_{k}}\right)_{p}(T-25)+C_{w} \times h \\
&+C_{w}(T-25)\left(\frac{\partial h}{\partial T_{k}}\right)_{p}+\Delta H_{v}\left(\frac{\partial h}{\partial T_{k}}\right)_{p}+h\left(\frac{\partial\left(\Delta H_{v}\right)}{\partial T_{k}}\right)_{p}
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{C}=\text { the heat capacity of the wet } \mathrm{H}_{2} \mathrm{~S} \\
& T_{k}=\text { temperature, }{ }^{\circ} \mathrm{K} .
\end{aligned}
$$

$$
\left[\frac{\partial H_{G}}{\partial p}\right]_{T}=\left(\frac{\partial H_{s}}{\partial p}\right)_{T}+C_{w}(T-25)\left(\frac{\partial h}{\partial p}\right)_{T}+\Delta H_{v}\left(\frac{\partial h}{\partial p}\right)_{T}
$$

Heat Capacity of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{C}_{\mathrm{g}}$. For $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$

$$
C_{p}=7.15+3.32 \times 10^{-3} T_{k}
$$

[from data of P.C. Cross as given by Kelly (4)]
This equation gives C_{p} at $25^{\circ} \mathrm{C}$. as 8.14 cal . per mole deg. However, a recent paper by Evans and Wagman (1) reports what are probably more precise values: $C_{p}=8.19$ at $25^{\circ} \mathrm{C}$.; $C_{p}=8.20$ at $27^{\circ} \mathrm{C} . ;$ and 8.53 at $127^{\circ} \mathrm{C}$. Accordingly, the relation

$$
C_{p}=7.20+3.32 \times 10^{-3} T_{k}
$$

will be used. Since C_{g} is the mean molar heat capacity of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, in the interval T to $25^{\circ} \mathrm{C}$.

$$
C_{R}=\frac{C_{p 25^{\circ} \mathrm{C}}+C_{p, T}}{2}=8.19+1.66 \times 10^{-3}\left(T-25^{\circ} \mathrm{C} .\right)
$$

Heat Capacity of Water, C_{w}. The heat capacity of water is observed to be essentially constant over the interval 25° to $40^{\circ} \mathrm{C}$. and equal to 0.9975 cal . per deg. ($15^{\circ} \mathrm{cal}$.) (5). The molar heat capacity of $\mathrm{H}_{2} \mathrm{O}$ is accordingly,

$$
C_{w}=0.9975 \times 18.016=17.971 \mathrm{cal} . / \mathrm{mole} \mathrm{deg} .
$$

Heat of Vaporization of Water, $\Delta H_{c} . \Delta H_{v}$ is the heat of vaporization of liquid water into saturated vapor at the temperature specified, T, and at the total pressure equal to the vapor pressure of the liquid. The heat of vaporization varies slightly with the total pressure on the liquid by the amount of change of the $P V$ term in the expression $\Delta H=$ $\Delta E+\Delta(P V)$. Over the pressure range employed (1 to 250 p.s.i.), this amounts to some 6 cal . per mole in the $10,000 \mathrm{cal}$. per mole ΔH_{v}; hence its inclusion was omitted as being beyond the precision of present calculations. The heat of vaporization of water varies linearly with temperature throughout the range 25° to $43^{\circ} \mathrm{C}$. to within the accuracy of the values shown in Keenan's steam tables (3). The expression $\Delta H_{v}=10,500+10.0(25-T)$ (cal. per mole) represents the experimental values with a precision of 2 parts in 10,000 over the range.

Humidity of Gaseous $\mathrm{H}_{2} \mathrm{~S}$ Saturated with Water Vapor, h. Values of gas humidity are calculated from the behavior of $\mathrm{H}_{2} \mathrm{~S}$ gas and water vapor as determined by Selleck, Carmichael, and Sage (6). An analysis of the data of Selleck and others showed that the data on humidity could be represented to within experimental error analytically by the function,

$$
\log h=\frac{-2123}{T_{k}}+4.53693, \text { at } 250 \text { p.s.i.a., }
$$

and that these values of h multiplied by 1.0155 give the humidity at 244 p.s.i.a. over the temperature range 30° to $43^{\circ} \mathrm{C}$. Over the range 250 ± 20 p.s.i., the relation

$$
h=\left(\frac{638.1-p}{75.8}\right) \times 10^{-3}=h_{(250)}+\left(\frac{250-p}{75.8}\right) \times 10^{-3} \frac{\text { mole } \mathrm{H}_{2} \mathrm{O}}{\text { mole } \mathrm{H}_{2} \mathrm{~S}}
$$

describes the changes of h with p to within 0.8%, hence

$$
\frac{\partial h}{\partial p}=-\frac{10^{-3}}{75.8} \frac{\text { mole } \mathrm{H}_{2} \mathrm{O} \text { per mole } \mathrm{H}_{2} \mathrm{~S}}{\text { p.s.i. }}
$$

and

$$
h_{T, p}=3.298 \times 10^{-3}-(p) \frac{10^{-3}}{75.8}+10^{\left.(-212\}, T_{\mathrm{h}}+4.5383\right)}
$$

in the prescribed range. Data used to obtain this relation (6) are given in Table I.

Change of Enthalpy of Wet, Gaseous $\mathrm{H}_{2} \mathrm{~S}$ with Temperature. The rate of change of enthalpy of wet, gaseous $\mathrm{H}_{2} \mathrm{~S}$ with temperature, or in other words the effective molar heat capacity, $\left[\partial H_{G} / \partial T_{k}\right]_{p}$ of the gas is given, as shown earlier, by

$$
\begin{aligned}
C_{\sigma}=\left[\frac{\partial H_{G}}{\partial T_{k}}\right]_{\rho}=C_{g}+(T-25) & {\left[\left(\frac{\partial C_{g}}{\partial T_{k}}\right)_{\rho}+C_{w}\left(\frac{\partial h}{\partial T_{k}}\right)_{p}\right] } \\
& h\left[C_{w}+\left(\frac{\partial\left(\Delta H_{v}\right)}{\partial T_{k}}\right)_{p}\right]+\Delta H_{v}\left(\frac{\partial h}{\partial T_{k}}\right)_{p}
\end{aligned}
$$

Since

$$
\begin{array}{r}
C_{g}=8.19+1.66 \times 10^{-3}(T-25), \text { cal. } / \text { deg. mole } \mathrm{H}_{2} \mathrm{~S} \\
\left(\frac{\partial C_{g}}{\partial T_{k}}\right)_{p}=1.66 \times 10^{-3} \text { cal. } / \text { mole deg. }{ }^{2}
\end{array}
$$

and

$$
\begin{aligned}
& C_{w}=17.971 \text { cal. } / \text { deg. mole } \mathrm{H}_{2} \mathrm{O} \\
& h=3.298 \times 10^{-3}-p \frac{10^{-3}}{75.8}+10^{-2123 / T_{p}+4.20283} \text { mole } \mathrm{H}_{2} \mathrm{O} / \text { mole } \mathrm{H}_{2} \mathrm{~S} \\
& \left(\frac{\partial h}{\partial T_{k}}\right)_{p}=\frac{4889}{T_{k}{ }^{2}} \times 10^{-2283 / 7 T_{k}+4.53833} \frac{\text { mole } \mathrm{H}_{2} \mathrm{O}}{\left(\text { mole } \mathrm{H}_{2} \mathrm{~S}\right)(\text { deg. })} \\
& =\frac{4889}{T_{k}^{2}} \times h_{\left(500_{\text {P.si }}\right)} \\
& \left(\frac{\partial h}{\partial p}\right)_{T}=-\frac{10^{-3}}{75.8} \frac{\text { mole } \mathrm{H}_{2} \mathrm{O}}{\left(\text { mole } \mathrm{H}_{2} \mathrm{~S}\right)(\text { p.s.i. })} \\
& \Delta H_{v}=10,500+10.0(25-T) \text { cal. } / \text { mole } \mathrm{H}_{2} \mathrm{O} \\
& {\left[\frac{\partial\left(\Delta H_{v}\right)}{\partial T_{k}}\right]_{\rho}=-10.0 \frac{\mathrm{cal} .}{\left(\text { mole } \mathrm{H}_{2} \mathrm{O}\right)(\text { deg. })}}
\end{aligned}
$$

then

$$
\begin{array}{rl}
{\left[\frac{\partial H_{G}}{\partial \bar{T}_{k}}\right]_{p}} & 8.19+(T-25)[0.00332 \\
& \left.+17.971 \times \frac{4889}{T_{k}^{2}} \times 10^{-2123 / T_{k}+4.5980}\right] \\
& +\left[3.298 \times 10^{-3}-p \frac{10^{-3}}{75.8}+10^{-2121 / T_{k}+4.58888}\right] \\
& \times[17.971-10.0]+[10,500+10.0(25-T)] \\
& \times \frac{4889}{T_{k}^{2}} \times 10^{-2123 / T_{k}}+4.4 .5898
\end{array}
$$

in

$$
\frac{\mathrm{cal} .}{\left(\text { mole } \mathrm{H}_{2} \mathrm{~S}\right)(\text { deg. })}
$$

or

$$
\begin{aligned}
{\left[\frac{\partial H_{o}}{\partial T_{k}}\right]_{p}=8.19+(T-25) } & {\left[0.00332+\frac{87,860}{T_{k}^{2}} \times h_{(220)}\right] } \\
& +h(7.971)+(10,750-10.0 T) \times \frac{4889}{T_{k}^{2}} \times h_{(250)}
\end{aligned}
$$

Values are given in Table II.

Table I. Humidity of Wet $\mathrm{H}_{2} \mathrm{~S}$

Temp.		Humidity, h	
${ }^{\circ}$ C.	${ }^{\circ} \mathrm{K}$.		Pressure,
37.8	310.9	100	Pole $\mathrm{H}_{2} \mathrm{O} /$ Mole $\mathrm{H}_{2} \mathrm{~S}$
		200	0.01071
		244	0.00602
		250	0.00520 (interpolated)
		300	0.00512
71.1	344.2	100	0.05340
		200	0.02817
		250	0.02343
		344	0.0238 (interpolated)
		300	0.02030

Change of Enthalpy of Wet, Gaseous $\mathrm{H}_{2} \mathrm{~S}$ with Pressure. The rate of change of enthalpy of wet, gaseous $\mathrm{H}_{2} \mathrm{~S}$ with pressure is given by:

$$
\left[\frac{\partial H_{G}}{\partial p}\right]_{T}=\left(\frac{\partial H_{g}}{\partial p}\right)_{T}+C_{\omega}(T-25)\left(\frac{\partial h}{\partial p}\right)_{T}+\Delta H_{v}\left(\frac{\partial h}{\partial p}\right)_{T}
$$

$$
\left(\frac{\partial h}{\partial p}\right)_{T}=-\frac{10^{-3}}{75.8} \frac{\text { mole } \mathrm{H}_{2} \mathrm{O}}{\left(\text { mole } \mathrm{H}_{2} \mathrm{~S}\right)(\text { p.s.i. })}
$$

$\left[\frac{\partial H_{g}}{\partial p}\right]_{T}=$ Joule-Thompson expansion cooling of $\mathrm{H}_{2} \mathrm{~S}$
Hydrogen sulfide gas has a large Joule-Thompson coefficient, and cools considerably when expanded, at least at temperatures above $25^{\circ} \mathrm{C}$. and pressures above 1 atm ., as judged from the calculations of West (8). Selected values from West's tables were used to construct Table III which shows the variation of enthalpy with temperature and pressure. From these data, it was concluded that the change of enthalpy with pressure was constant over the pressure and temperature range of 15 to 300 p.s.i.a. and 25° to 50° C.-i.e., $\left[\partial H_{g} / \partial p\right]_{T}=-1.051 \mathrm{cal}$. per mole p.s.i. For a 6.0 -p.s.i. pressure drop at about $38^{\circ} \mathrm{C}$., the enthalpy change per mole is therefore $\Delta H=-6(-1.051)=+6.306 \mathrm{cal}$. per mole at $37.78^{\circ} \mathrm{C}$. The value of the coefficient $\Delta H / \Delta p$, for $\mathrm{H}_{2} \mathrm{~S}$, by way of comparison, is about 10 times that for air, the latter having a value of -0.121 cal . per mole p.s.i.
Substitution of these values into the equation for the enthalpy change of wet gaseous $\mathrm{H}_{2} \mathrm{~S}$ with pressure gives:

$$
\begin{aligned}
& {\left[\frac{\partial H_{\mathrm{G}}}{\partial p}\right]_{T}=-1.051 }+17.971(T-25)\left(\frac{-10^{-3}}{75.8}\right) \\
&+[10,500+10.0(25-T)]\left(\frac{-10^{-3}}{75.8}\right) \\
&=-1.1870-1.052 \times 10^{-4} T, \frac{\mathrm{cal} .}{\left(\text { mole } \mathrm{H}_{2} \mathrm{~S}\right)(\text { p.s.i. })}
\end{aligned}
$$

Table III. Change of Enthalpy of Dry, Gaseous $\mathrm{H}_{2} \mathrm{~S}$ with Pressure					
Temp.				Enthalpy	
		Pressure,	Pressure,	B.t.u.	Cal. per
${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{C}$.	P.S.I.	Atm.	per lb.	mole
80	26.67	14.7	1.0	273.7	5182.5
80	26.67	147	10.0	265.5	5027.2
80	26.67	294	20.0		
100	37.78	14.7	1.0	277.7	5258.2
100	37.78	147	10.0	270.3	5118.1
100	37.78	294	20.0	262.2	4964.7
120	48.89	14.7	1.0	282.5	5349.1
120	48.89	147	10.0	275.5	5216.6
120	48.89	294	20.0	267.7	5068.9

Table II. Solubility, Humidity, Heat Capacity, and Enthalpy of Aqueous $\mathrm{H}_{2} \mathrm{~S}$ Solutions and Wet Gaseous $\mathrm{H}_{2} \mathrm{O}$ at 250 P.S.I.A.

[^0]Enthalpy of Aqueous H_{2} S Solutions. The enthalpy of water saturated with $\mathrm{H}_{2} \mathrm{~S}$ is dependent on temperature and pressure. It is desired to evaluate those changes in enthalpy as the solution proceeds from one set of conditions to another in the towers.
$\Delta H_{L}=$ enthalpy to bring 1 mole of pure $\mathrm{H}_{2} \mathrm{O}$ from $25^{\circ} \mathrm{C}$. to t, plus enthalpy to bring 1 mole of pure $\mathrm{H}_{2} \mathrm{O}$ from its vapor pressure p_{0}^{\prime} at $25^{\circ} \mathrm{C}$. to p, plus enthalpy change in raising S moles of $\mathrm{H}_{2} \mathrm{~S}$ from $25^{\circ} \mathrm{C}$. to t plus enthalpy change in bring S moles of $\mathrm{H}_{2} \mathrm{~S}$ at t from 1 atm . to p, plus enthalpy of solution of S moles of $\mathrm{H}_{2} \mathrm{~S}$ in 1 mole of $\mathrm{H}_{2} \mathrm{O}$ at p and t

$$
\begin{aligned}
\Delta H_{L}=C_{w}(t-25)+ & \int_{p^{\prime}}^{p}\left(\frac{\partial H_{w}}{\partial p}\right)_{T} d p+S \times C_{g}(t-25) \\
& +S \times \int_{p=1 \mathrm{~atm} .}^{p}\left(\frac{\partial H_{g}}{\partial p}\right)_{T} d p+\int_{0}^{S} \Delta H_{s} d S
\end{aligned}
$$

where
$S=$ mole $\mathrm{H}_{2} \mathrm{~S}$ per mole $\mathrm{H}_{2} \mathrm{O}=$ solubility of $\mathrm{H}_{2} \mathrm{~S}$ in water
$\Delta H_{s}=$ heat of solution in water of 1 mole $\mathrm{H}_{2} \mathrm{~S}$ at temperature t
$C_{\kappa}=$ heat capacity of water, mean molar over range $25^{\circ} \mathrm{C}$. to t
$C_{B}=$ heat capacity of $\mathrm{H}_{2} \mathrm{~S}$, mean molar over range $25^{\circ} \mathrm{C}$. to t
$t=$ liquid temperature, ${ }^{\circ} \mathrm{C}$.
$H_{u}=$ enthalpy of liquid water
$H_{g}=$ enthalpy of dry gaseous $\mathrm{H}_{2} \mathrm{~S}$
Now,

$$
d H_{L}=\left[\frac{\partial H_{L}}{\partial T_{k}}\right]_{p} d t+\left[\frac{\partial H_{L}}{\partial p}\right]_{T_{k}} d p
$$

By application of the first and second laws of thermodynamics

$$
\left(\frac{\partial H_{w}}{\partial p}\right)_{T}=v_{w}-T_{k}\left(\frac{\partial v_{c}}{\partial T_{k}}\right)_{P}
$$

where v_{w} is the molar volume of liquid water.
Since, in the region of interest, $C_{w},\left(\partial H_{g} / \partial p\right)_{T}$, and $\left(\partial v_{w} / \partial T_{k}^{\prime}\right)_{p}$ are essentially independent of temperature and pressure; and $C_{g},\left(\partial H_{w} / \partial p\right)_{T}, \Delta H_{s}$, and v_{w} are essentially independent of pressure and solubility, we may write

$$
\begin{aligned}
\Delta H_{L}=C_{w}(t-25)+ & {\left[v_{w}-T_{k}\left(\frac{\partial v_{w}}{\partial T_{k}}\right)_{p}\left(p-p_{0}^{\prime}\right)\right] } \\
& +S\left[\left(\frac{\partial H_{g}}{\partial p}\right)_{T}(p-14.7)+C_{g}(t-25)+\Delta H_{s}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
C_{L}=\left[\frac{\partial H_{L}}{\partial T_{k}}\right]_{p} & =C_{w}+\frac{\partial S}{\partial T_{k}} \\
& {\left[\left(\frac{\partial H_{g}}{\partial p}\right)_{T}(p-14.7)+C_{g}(t-25)+\Delta H_{s}\right] } \\
& +S\left[C_{g}+\left(\frac{\partial C_{g}}{\partial T_{k}}\right)_{p}(t-25)+\left(\frac{\partial\left(\Delta H_{s}\right)}{\partial T_{k}}\right)_{p}\right]
\end{aligned}
$$

where

$$
C_{L}=\text { effective molar heat capacity of the solution }
$$

and

$$
\begin{aligned}
{\left[\frac{\partial H_{L}}{\partial p}\right]_{T}=} & {\left[v_{w}-T_{k}\left(\frac{\partial v_{w}}{\partial T_{k}}\right)_{p}\right]+\frac{\partial S}{\partial p} } \\
& {\left[\left(\frac{\partial H_{g}}{\partial p}\right)_{T}(p-14.7)+C_{g}(t-25)+\Delta H_{s}\right]+\left(\frac{\partial H_{g}}{\partial p}\right)_{T} S }
\end{aligned}
$$

The Heat of Solution of $\mathrm{H}_{2} \mathrm{~S}, \Delta H_{s}$. Examination of the data of Wright and Maass as summarized by Kelley (4)
permitted an evalution of the heat of solution of $\mathrm{H}_{2} \mathrm{~S}$ in water. In this connection, the Van't Hoff equation is useful:

$$
\frac{d(\ln c)}{d T_{k}}=\frac{\Delta H_{s}}{R T_{k}^{2}} \quad \text { or } \quad \frac{d(R \ln c)}{d\left(1 / T_{k}\right)}=\Delta H_{s}
$$

where c is the observed solubility at 1 atm .
Table IV gives the data of Wright and Maass. Table V gives data derived here from the data of Selleck, Carmichael, and Sage (6).

The values of the heat of solution obtained from both sources are plotted in Figure 2. The values of ΔH_{s} can be well described over the 5° to $80^{\circ} \mathrm{C}$. range by the equation:

$$
\Delta H_{s}=-5182.5+39.5 t^{\circ} \mathrm{C}
$$

and by this calculation would have the values -4005 and

Figure 2. Heat of solution of $\mathrm{H}_{2} \mathrm{~S}$ in water
-3612.5 cal. per mole at 30° and 40° C., respectively. A numerically decreasing heat of solvation of the $\mathrm{H}_{2} \mathrm{~S}$ molecule is indicated. It would appear that the formation of the $\mathrm{H}_{2} \mathrm{~S}-\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}$ complex is favored by lower temperatures.

Solubility of $\mathrm{H}_{2} \mathrm{~S}$ in Water, S. A survey of the literature on the solubility of $\mathrm{H}_{2} \mathrm{~S}$ in water showed the determinations of Selleck, Carmichael, and Sage (6) to cover the range of pressures and temperatures required here. Their data in these ranges are summarized in Figure 3 and 4. Their data may be presented analytically to within experimental error over the temperature range 25° to $70^{\circ} \mathrm{C}$. at 250 p.s.i.a. by the equation

$$
\log S=\frac{935.00}{T_{k}}-4.6810
$$

and more broadly by

$$
\log S=\frac{935.00}{T_{k}}-7.07894+\log p
$$

over the pressure range 200 to 350 p.s.i.a., where

$$
\begin{aligned}
S & =\text { solubility of } \mathrm{H}_{2} \mathrm{~S}, \text { mole } \mathrm{H}_{2} \mathrm{~S} / \text { mole } \mathrm{H}_{2} \mathrm{O} \\
T_{k} & =\text { absolute temperature, }{ }^{\circ} \mathrm{K} . \\
p & =\text { total system pressure, p.s.i.a. }
\end{aligned}
$$

(The expression $\log S=935.00 / T_{k}-7.07729+\log p_{1}$, where p_{1} is the partial pressure of the $\mathrm{H}_{2} \mathrm{~S}$, is applicable over a range from about 1 to 350 p.s.i.a., but is somewhat less convenient for present purposes.)

Change of Enthalpy with Temperature of Water Containing Dissolved $\mathrm{H}_{2} \mathrm{~S}$. The rate of change of enthalpy with tem-

Table IV. Heat of Solution of $\mathrm{H}_{2} \mathrm{~S}$ in Water (Wright and Maass Data)

$t,{ }^{\circ} \mathrm{C}$.	$T,{ }^{\circ} \mathrm{K}$.	$1 / T{ }_{6} \times 10^{3}$	$-R \ln c$	$\begin{aligned} & \Delta(R \ln \varepsilon) \text { from } \\ & T \text { to } T+10^{\circ} \mathrm{K} . \end{aligned}$	$\Delta\left(1 / T_{k}\right)$	$-\Delta H_{s} \times 10^{3}$
5	278.1	3.59582	3.429	0.594	0.12481	4.759
10	283.1	3.53232	3.730	0.550	0.12052	4.563
15	288.1	3.47101	4.023	0.514	0.11626	4.421
20	293.1	3.41180	4.280	0.484	0.11256	4.2995
25	298.1	3.35457	4.537	$\left(227, \Delta T=5^{\circ}\right)$	(0.05533)	(4.10)
30	303.1	3.29924	4.764	0.394	0.10538	3.739
40	313.1	3.19386	5.158	0.338	0.09885	3.419
50	323.1	3.09501	5.496	0.285	0.09291	3.067
60	333.1	3.00210	5.781

Table V. Calculations of Heat of Solution of $\mathrm{H}_{2} \mathrm{~S}$ in Water (From data of Selleck and others)

Table VI. Heat Capacity Ratio and Relative Thermal Capacities of Gaseous $\mathrm{H}_{2} \mathrm{~S}$ and Liquid $\mathrm{H}_{2} \mathrm{O}$ Saturated with Each Other at 250 P.S.I.A.

Temp., ${ }^{\circ} \mathrm{C}$.	C_{L} / C_{G}	γ at $L / G=0.52$	γ at $L / G=0.50$	γ at $L / G=0.48$	γ at $L / G=0.46$	γ at $L / G=0.44$
30	2.13576	1.11060	1.06788	1.02516	0.98245	0.93973
31	2.10272	1.09341	1.05136	1.00931	0.96725	0.92520
32	2.07025	1.07653	1.03513	0.99372	0.95232	0.91091
33	2.03798	1.05975	1.01899	0.97823	0.93747	0.89671
34	2.00611	1.04318	1.00306	0.96293	0.92281	0.88269
35	1.97442	1.02670	0.98721	0.94772	0.90823	0.86874
36	1.94299	1.01035	0.97150	0.93264	0.89378	0.85492
37	1.91191	0.99419	0.95596	0.91772	0.87948	0.84124
38	1.88105	0.97815	0.94053	0.90290	0.86528	0.82766
39	1.85038	0.96220	0.92519	0.88818	0.85117	0.81417
40	1.81986	0.94633	0.90993	0.87353	0.83714	0.80074
41	1.78968	0.93063	0.89484	0.85905	0.82325	0.78746
42	1.75948	0.91493	0.87974	0.84455	0.80936	0.77417
43	1.72987	0.89953	0.86494	0.83034	0.79574	0.76114

perature of water containing dissolved $\mathrm{H}_{2} \mathrm{~S}$, or the effective molar heat capacity of the solution, C_{L}, is given as shown earlier, by

$$
C_{L}=\left[\frac{\partial H_{L}}{\partial T_{k}}\right]_{p}=C_{\omega}+\frac{\partial S}{\partial T_{k}}
$$

$$
\begin{aligned}
\times\left[\left(\frac{\partial H_{g}}{\partial p}\right)_{T}\right. & \left.(p-14.7)+C_{g}(t-25)+\Delta H_{s}\right] \\
& +S\left[C_{g}+\left(\frac{\partial C_{g}}{\partial T_{k}}\right)_{p}(t-25)+\left(\frac{\partial\left(\Delta H_{s}\right)}{\partial T_{k}}\right)_{p}\right]
\end{aligned}
$$

Since

$$
\begin{gathered}
C_{g}=8.19+1.66 \times 10^{-3}(t-25) \text { in cal. per deg. mole } \mathrm{H}_{2} \mathrm{~S} \\
\left(\frac{\partial C_{g}}{\partial T_{k}}\right)_{\rho}=1.66 \times 10^{-3} \frac{\text { cal. }}{\left(\text { mole } \mathrm{H}_{2} \mathrm{~S}\right)(\text { deg. })} \\
C_{w}=17.971 \frac{\text { cal. }}{(\text { deg. })\left(\text { mole } \mathrm{H}_{2} \mathrm{O}\right)} \\
\log S=\frac{935.00}{T_{k}}-7.07894+\log p \\
S=p \times 10^{955 / T_{k}-7.0894} \frac{\text { mole } \mathrm{H}_{2} \mathrm{~S}}{\text { mole } \mathrm{H}_{2} \mathrm{O}} \\
\left(\frac{\partial S}{\partial T_{k}}\right)_{p}=-p \frac{2153}{T_{k}^{2}} \times 10^{955 / T_{k}-7.07894} \frac{\mathrm{~mole} \mathrm{H}_{2} \mathrm{~S}}{\left(\mathrm{~mole} \mathrm{H}_{2} \mathrm{O}\right)(\text { deg. })} \\
=-\frac{2153}{T_{k}^{2}} S
\end{gathered}
$$

$$
\begin{aligned}
\left(\frac{\partial H_{g}}{\partial p}\right)_{T} & =-1.051 \frac{\mathrm{cal} .}{(\text { mole })(\text { p.s.i. })} \\
\Delta H_{\mathrm{s}} & =-5182.5+39.5 t \mathrm{cal} . / \mathrm{mole}_{2} \mathrm{~S} \\
\left(\frac{\partial H_{\mathrm{s}}}{\partial T_{k}}\right)_{p} & =39.5 \frac{\mathrm{cal} .}{\left(\text { mole } \mathrm{H}_{2} \mathrm{~S}\right)(\text { deg. })}
\end{aligned}
$$

The known values can be substituted to obtain:

$$
\begin{aligned}
{\left[\frac{\partial H_{L}}{\partial T_{k}}\right]_{p} } & =17.971-\frac{2153 \cdot \mathrm{~S}}{T_{k}{ }^{2}} \\
& \times\left[-1.051(p-14.7)+8.19(t-25)+1.66 \times 10^{-3}\right. \\
& \left.(t-25)^{2}-5182.5+39.5 t\right]+S\left[8.19+1.66 \times 10^{-3}\right. \\
& \left.(t-25)+1.66 \times 10^{-3}(t-25)+39.5\right]=17.971 \\
& -\frac{2153 \cdot \mathrm{~S}}{T_{k}^{2}}\left[-5371.8+47.69 \mathrm{t}+1.66 \times 10^{-3}(t-25)^{2}\right. \\
& -1.051 p]+S\left[47.61+3.32 \times 10^{-3} t\right]
\end{aligned}
$$

Change of Enthalpy with Pressure of Water Containing Dissolved $\mathrm{H}_{2} \mathrm{~S}$. The rate of change of enthalpy with temperature of water containing dissolved $\mathrm{H}_{2} \mathrm{~S}$ is given, as shown earlier, by

$$
\begin{aligned}
& {\left[\frac{\partial H_{L}}{\partial p}\right]_{T}=v_{w}-T_{k}\left(\frac{\partial v_{w}}{\partial T_{k}}\right)_{p}} \\
& \quad+\frac{\partial S}{\partial p}\left[\left(\frac{\partial H_{g}}{\partial p}\right)_{T}(p-14.7)+C_{g}(t-25)+\Delta H_{s}\right]+S\left[\frac{\partial H_{g}}{\partial p}\right]_{T}
\end{aligned}
$$

Figure 3. Solubility of $\mathrm{H}_{2} \mathrm{~S}$ in $\mathrm{H}_{2} \mathrm{O}$

The new term in this expression may be evaluated as follows:

$$
\begin{aligned}
& v_{w}=v_{0}\left[1-5.3255 \times 10^{-5} t+7.61532 \times 10^{-6} t^{2}\right. \\
&\left.-4.37217 \times 10^{-8} t^{3}+1.64322 \times 10^{-10} t^{4}\right]
\end{aligned}
$$

over the range 0° to $80^{\circ} \mathrm{C}$. (5)

$$
\begin{aligned}
v_{0}= & (0.999841 \mathrm{~g} . / \mathrm{cc} .)^{-1}=1.0001530 \mathrm{cc} . / \mathrm{g} \\
= & (18.016 \mathrm{~g} . / \text { mole }) \times 1.0001590 \mathrm{cc} . / \mathrm{g} . \\
= & 18.019 \mathrm{cc} . / \text { mole } \mathrm{H}_{2} \mathrm{O} \\
v_{w}= & 18.019\left[1-5.3255 \times 10^{-5} t+7.61532 \times 10^{-6} t^{2}\right. \\
& \left.\quad-4.37217 \times 10^{-8} t^{3}+1.64322 \times 10^{-10} t^{4}\right] \mathrm{cc} . / \text { mole } \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$$
\left[\frac{\partial v_{w}}{\partial T_{k}}\right]_{p}=18.019\left[-5.3255 \times 10^{-5}+1.523064 \times 10^{-5} t\right.
$$

$$
\left.-1.311651 \times 10^{-7} t^{2}+6.57288 \times 10^{-10} t^{3}\right] \text { cc. } /(\text { deg. })\left(\text { mole } \mathrm{H}_{2} \mathrm{O}\right)
$$

Conversion of the above volume units to heat units was done by using the gas constant:

$$
\begin{aligned}
R & =82.054 \mathrm{cc} . \text { atm. deg. } .^{-1} \text { mole }^{-1}=1.98647 \mathrm{cal} . \text { deg. } .^{-1} \mathrm{~mole}^{-1} \\
& =82.054 \mathrm{cc} . \text { atm. } \times 14.696 \text { p.s.i. } / \mathrm{atm} . \text { deg. }{ }^{-1} \mathrm{~mole}^{-1}
\end{aligned}
$$

Hence

$$
\begin{gathered}
\frac{1 \text { cc. }}{\text { mole }}=1.64733 \times 10^{-3} \frac{\text { cal. }}{\text { p.s.i. mole }} \\
v_{0 .}=18.019 \frac{\text { cc. }}{\text { mole } \mathrm{H}_{2} \mathrm{O}} \times 1.64733 \times 10^{-3} \frac{\mathrm{cal} .}{\text { p.s.i. cc. }} \\
=0.029683 \frac{\text { cal. }}{\text { p.s.i. mole } \mathrm{H}_{2} \mathrm{O}}
\end{gathered}
$$

and

$$
\begin{aligned}
& v_{w}=0.029683\left[1-5.3255 \times 10^{-5} t+7.61532 \times 10^{-6} t^{2}\right. \\
&\left.-4.37217 \times 10^{-8} t^{3}+1.64322 \times 10^{-10} t^{4}\right] \frac{\text { cal. }}{\text { p.s.i. mole } \mathrm{H}_{2} \mathrm{O}}
\end{aligned}
$$

and

Figure 4. Solubility of $\mathrm{H}_{2} \mathrm{~S}$ in $\mathrm{H}_{2} \mathrm{O}$
$\left[\frac{\partial v_{w}}{\partial T_{k}}\right]_{p}=0.029683\left[-5.3255 \times 10^{-5}+1.523064 \times 10^{-5} t\right.$

$$
\begin{aligned}
& \left.-1.311651 \times 10^{-7} t^{2}+6.57288 \times 10^{-10} t^{3}\right] \frac{\text { cal. }}{\text { p.s.i. deg. mole }} \\
& \frac{\partial S}{\partial p}=10^{003 / T_{h}-7.0284}=\frac{S}{p} \frac{\text { mole } \mathrm{H}_{2} \mathrm{~S}}{\left(\text { mole }_{2}\right)(\text { p.s.i. })}
\end{aligned}
$$

With these and terms evaluated earlier, the numerical value for the change of enthalpy of the solution with pressure is given as:

$$
\left[\frac{\partial H_{L}}{\partial p}\right]_{T}=0.029683\left[1-5.3255 \times 10^{-5} t+7.61532 \times 10^{-6} t^{2}\right.
$$

$$
\left.-4.372717 \times 10^{-8} t^{3}+1.64322 \times 10^{-10} t^{4}\right] \frac{\text { cal. }}{(\text { p.s.i. })\left(\text { mole } \mathrm{H}_{2} \mathrm{O}\right)}
$$

$$
-T_{k} \times 0.029683\left[-5.3255 \times 10^{-5}+1.523064 \times 10^{-5} t\right.
$$

$$
\left.-1.311651 \times 10^{-7} t^{2}+6.57288 \times 10^{-10} t^{3}\right] \frac{\mathrm{cal} .}{(\text { p.s.i. })\left(\text { mole } \mathrm{H}_{2} \mathrm{O}\right)}
$$

$$
+\left[10^{955 / T_{h}-7.0884}\right]\left[-5371.8-1.051 p+1.66 \times 10^{-3}(t-25)^{2}\right.
$$

$$
+47.69 t] \frac{\text { cal. }}{(\text { p.s.i. })\left(\text { mole } \bar{H}_{2} \mathrm{O}\right)}-p\left[10^{933 / \tau_{k}-7.08894}\right](1.051)
$$

$$
\frac{\text { cal. }}{(\text { p.s.i. })\left(\text { mole } \mathrm{H}_{2} \mathrm{O}\right)}
$$

Phase Relations for $\mathrm{H}_{2} \mathrm{~S}-\mathrm{H}_{2} \mathrm{O}$ System. The lower thermodynamically stable temperature limit of safe operation is that at which formation of ice-like crystals of $\mathrm{H}_{2} \mathrm{~S}$ hydrate occurs. A phase diagram of the $\mathrm{H}_{2} \mathrm{~S}-\mathrm{H}_{2} \mathrm{O}$ system is shown in Figure 1. The indicated phase diagram and the corresponding lower limit of the cold tower temperature are applicable only for the system pure $\mathrm{H}_{2} \mathrm{~S}-\mathrm{H}_{2} \mathrm{O}$, and it would be possible in principle to lower the limit for the dual temperature process advantageous by adding a third component.

Relative Thermal Capacity of Gas and Liquid Streams, γ. The values of γ, the relative thermal capacity at selected temperatures and flow rates of the gas and liquid streams, were calculated from data in Table II. They are plotted in Figure 5 and shown in Table VI.

Potential Energy of Liquid and Gas Streams. The potential energy of a stream is equal to its weight times its elevation.
$(\text { P.E. })_{G}=(34.08+18.016 h)(1.5)(z)(1 / 1400)$, p.c.u. $/$ pound-mole $\mathrm{H}_{2} \mathrm{~S}$ where 34.08 and 18.016 are the molecular weights of $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{O}, 1.5$ feet are the tray spacing, z, the number of trays, and 1400 foot-pounds equals 1 p.c.u. The value of the humidity, h, varies from 0.0034 at $30^{\circ} \mathrm{C}$. and 250 p.s.i.a. to 0.0058 at $40^{\circ} \mathrm{C}$. and 244 p.s.i.a. Using an average value of h :

$$
(\text { P.E. })_{G}=0.0366 z \text {, p.c.u. } / \text { pound-mole } \mathrm{H}_{2} \mathrm{~S}
$$

and

$$
\left.\frac{d(\text { P.E. })_{G}}{d z}=0.0366 \text { p.c.u. } / \text { (pound-mole } \mathrm{H}_{2} \mathrm{~S}\right)(\text { tray })
$$

Variation of h over the range given would result in only 0.1% change in (P.E.) $)_{G}$, and variation of S would result in 1.0% change in (P.E.) ${ }_{L}$.

Similarly

$(\text { P.E. })_{L}=(18.016+34.08 S)(1.5)(z)(1 / 1400)$, p.c.u. $/$ pound-mole $\mathrm{H}_{2} \mathrm{O}$.
S varies from 0.0197 at $40^{\circ} \mathrm{C}$. and 244 p.s.i.a. to 0.0253 at $30^{\circ} \mathrm{C}$. and 250 p.s.i.a. Using an average value of S :
(P.E.) $L_{L}=0.0201$ z, p.c.u. $/$ pound-mole $\mathrm{H}_{2} \mathrm{O}$
and

Figure 5. Variation of relative thermal capacity $\gamma=L C_{L} / G C_{G}$ with temperature and relative flow for countercurrent $\mathrm{H}_{2} \mathrm{~S}$ gas and $\mathrm{H}_{2} \mathrm{~S}$ at saturation equilibrium and at 250 p.s.i.a.

$$
\frac{d(\text { P.E. })_{L}}{d z}=0.0201, \text { p.c.u. } / \text { (pound-mole } \mathrm{H}_{2} \mathrm{O} \text {) (tray) }
$$

For a 6-p.s.i. drop across 70 trays:

$$
\frac{d p}{d z}=\frac{-6}{70}=-0.08571 \text { p.s.i. } / \text { tray }
$$

Heat of Reaction for Isotope Excahnge Reaction. The heat of the exchange can be estimated from the results of Suess (7). From these results, it can be calculated that the experimental determination of the equilibrium at elevated temperatures (350° to $500^{\circ} \mathrm{C}$.) fits the heat of exchange shown:

Theoretical calculations made by Geib and Suess indicate for reactions in the temperature range 0° to $100^{\circ} \mathrm{C}$.:
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{HDS}(\mathrm{g})=\mathrm{HDO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) ; \Delta H_{e}^{0}=-463 \mathrm{cal} . /$ mole D

$$
K_{s}=1.010 e^{4 s_{3} \mathrm{R} 7_{k}}=\frac{[\mathrm{HDO}]_{g}\left[\mathrm{H}_{2} \mathrm{~S}_{s}\right]^{2}}{\left[\mathrm{H}_{2} \mathrm{O}\right]_{s}[\mathrm{HDS}]_{s}}
$$

$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{HDS}(\mathrm{g})=\mathrm{HDO}(\mathrm{l})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) ; \Delta H_{e}^{0}=-593$ cal. $/$ mole D

$$
K_{L}=0.871 e^{5 g 8 / R T k}=\frac{[\mathrm{HDO}]_{[}\left[\mathrm{H}_{2} \mathrm{~S}\right]_{g}}{\left[\mathrm{H}_{2} \mathrm{O}\right]_{[}[\mathrm{HDS}]_{g}}
$$

From these data the theoretical value $\Delta H_{e}^{0}=-593$ cal./mole HDO would apply to the case where liquid water is contacted with gaseous $\mathrm{H}_{2} \mathrm{~S}$.

literature Cited

(1) Evans, W.H., Wagman, D.D., J. Research Natl. Bur. Standards 49, 141 (1952).
(2) Hull, H.L., Pohl, H.A., "Thermal Behavior of Countercurrent Equipment," E.I. du Pont de Nemours \& Co., Wilmington, Del., U.S. Atomic Energy Comm., Research and Develop. Rept. DP-97, 1954, declassified March 15, 1957.
(3) Keenan, J.H., Kayes, F.G., "Thermodynamic Properties of Steam,'" Wiley, New York, 1936.
(4) Kelley, K.K., U.S. Bur. Mines Bull. 406.
(5) Lange, N.A., "Handbook of Chemistry," 7th ed., Handbook Publ., Sandusky, Ohio.
(6) Selleck, F.T., Carmichael, L.T., Sage, B.H., Ind. Eng. Chem. 44, 2219 (1952).
(7) Suess, A.E., FIAT Rev. Ger. Sci., Physical Chemistry (19391946), pp. 22-3, U. S. Dept. Commerce, Office Tech. Services, Physsical Chemistry, P.B. Rept. 95682, 1948.
(8) West, J.R., Chem. Eng. Progr. 44, No. 4, 289 (1948).

Received for review June 29, 1960. Accepted April 20, 1961. Work supported by Atomic Energy Commission at Explosives Dept., Atomic Division, E.I. du Punt de Nemours \& Co., under Contract AT(07-2)-1. Article written with permission of Atomic Energy Commission and E.I. du Pont De Nemours \& Co. at the Plastic Laboratory, Princeton University, Princeton, N. J., under Signal Corps Contract No. D-36-039sc-78105; DA Project 3-99-15-108; ONR 356-375; WADD Project 7371.

CORRECTION

In "Heat Transfer Characteristics of Fluorochemical Inert Liquid FC-75" [M.C. Marcellus, A.F. Spilhaus, Jr., and L.A. Troeltzsch, J. Chem. Eng. Data 6, 459 (1961)],
the first column of the table on page 460 was misaligned horizontally and should be moved down one line, so that specific gravity is aligned with $1.77,0.97$, and 0.887 .

[^0]: Mole $\mathrm{H}_{2} \mathrm{O} /$ mole $\mathrm{H}_{2} \mathrm{~S}$.
 Mole $\mathrm{H}_{2} \mathrm{~S} /$ mole $\mathrm{H}_{2} \mathrm{O}$.
 ${ }^{-}$Cal./mole degree.

