Thermodynamics of the Hydrogen Sulfide–Water System Relevant to the Dual Temperature Process for the Production of Heavy Water

HERBERT A. POHL¹

Explosives Department, Atomic Energy Division, E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.

 $T_{\rm HE}$ DUAL temperature isotope exchange process for heavy water makes use of the variation in hydrogen isotope distribution with temperature of the H₂S-H₂O system. It depends upon the shift in equilibrium of the isotope exchange reaction:

 $H_2O(l) + HDS(g) = HDO(l) + H_2S(g);$

 $\Delta H_e^0 = -593 \text{ cal.}/\text{gram atom D}$ (theor.)

The wider the operating temperature interval, the greater the change in isotopic composition of the paired hot and cold towers, and the greater the yield of the process. The practical, upper operating temperature limit is set by economic factors at about 140° C. The lower operating temperature limit is set by the temperature of formation of an ice-like H₂S hydrate (27.4° C. at 250 p.s.i.a.; 28.8° C. at 300 p.s.i.a., Figure 1).

In the case of countercurrent processes where the enthalpies of the two streams are nearly equal, unusual plate-to-plate temperature changes may occur within the system (2). For this reason the following detailed analysis has been made of relevant thermodynamic data for the H_2S-H_2O system. In the countercurrent dual-temperature process such normally small enthalpy effects as the nonideality of H_2S gas (Joule-Thompson cooling) and the above reaction play major roles.

DISCUSSION

Thermodynamic Properties of Gaseous and Aqueous H_2S . ENTHALPY OF WET H_2S . The enthalpy of H_2S saturated with water vapor is dependent on temperature and pressure. Changes in enthalpy are evaluated as the gas proceeds from one set of conditions to another in the towers.

 ΔH_G = enthalpy to bring 1 mole of pure H₂S gas from 25° C. to T, plus enthalpy change in compressing it from 1 atm. to p, plus enthalpy change in raising h moles of H₂O(l) to T from 25° C., plus enthalpy change of raising h moles of H₂O(l) from the pressure of its own vapor at 25° C. to the pressure of its vapor at temperature T, plus heat of vaporization of h moles of H₂O at T and p.

$$\Delta H_{G} = C_{\varepsilon}(T-25) + \int_{p=1 \text{ atm.}}^{p=p} \left(\frac{\partial H_{s}}{\partial p}\right)_{T} dp$$
$$+ C_{w} \times h(T-25) + h \int_{p_{0}^{c}}^{p'} \left(\frac{\partial H_{w}}{\partial p}\right)_{T} dp' + h \times \Delta H_{\varepsilon}$$

where

- C_s = mean molar heat capacity of pure H₂S(g) in interval 25° C. to T
- C_u = mean molar heat capacity of H₂O(l) in interval 25° C. to T
- ΔH_v = molar heat of vaporization of H₂O at temperature T T = vapor temperature, °C.
 - $h = \text{humidity of } H_2S = \text{mole } H_2O \text{ per mole } H_2S$

¹Present address, Plastic Laboratory, Princeton University, Princeton, N. J.

 H_s = enthalpy per mole of pure H_2S gas (different from H_G = enthalpy per mole of H_2S containing moisture) H_w = enthalpy of liquid water

For present calculations there is needed $[\partial H_G/\partial T]_p$ and $[\partial H_G/\partial p]_T$. Since, in the region of interest, C_w and $(\partial H_g/\partial p)_T$ as shown later are essentially independent of T and p, and C_g and ΔH_v are essentially independent of p while $(\partial H_w/\partial p)_T$ is small and negligible for present purposes,

$$\Delta H_G = C_g(T-25) + \left(\frac{\partial H_g}{\partial p}\right)_T (p-14.7) + C_w \times h(T-25) + h \times \Delta H_v$$

and

$$C_{G} = \left[\frac{\partial H_{G}}{\partial T_{k}}\right]_{p} = C_{g} + \left(\frac{\partial C_{g}}{\partial T_{k}}\right)_{p} (T-25) + C_{w} \times h$$
$$+ C_{w}(T-25)\left(\frac{\partial h}{\partial T_{k}}\right)_{p} + \Delta H_{v}\left(\frac{\partial h}{\partial T_{k}}\right)_{p} + h\left(\frac{\partial(\Delta H_{v})}{\partial T_{k}}\right)_{p}$$

where

 C_{G} = the heat capacity of the wet H₂S T_{k} = temperature, ° K.

VOL. 6, NO. 4, OCTOBER 1961

$$\left[\frac{\partial H_{g}}{\partial p}\right]_{T} = \left(\frac{\partial H_{g}}{\partial p}\right)_{T} + C_{w}(T-25)\left(\frac{\partial h}{\partial p}\right)_{T} + \Delta H_{v}\left(\frac{\partial h}{\partial p}\right)_{T}$$

Heat Capacity of H_2S , C_g . For $H_2S(g)$

$$C_p = 7.15 + 3.32 \times 10^{-3} T_k$$

[from data of P.C. Cross as given by Kelly (4)]

This equation gives C_p at 25° C. as 8.14 cal. per mole deg. However, a recent paper by Evans and Wagman (1) reports what are probably more precise values: $C_p = 8.19$ at 25° C.; $C_p = 8.20$ at 27° C.; and 8.53 at 127° C. Accordingly, the relation

$$C_p = 7.20 + 3.32 \times 10^{-3} T_k$$

will be used. Since C_s is the mean molar heat capacity of $H_2S(g)$, in the interval T to 25° C.

$$C_{s} = \frac{C_{p \ 25^{\circ} \text{C.}} + C_{p, T}}{2} \approx 8.19 + 1.66 \times 10^{-3} (T - 25^{\circ} \text{C.})$$

Heat Capacity of Water, C_w . The heat capacity of water is observed to be essentially constant over the interval 25° to 40° C. and equal to 0.9975 cal. per deg. (15° cal.) (5). The molar heat capacity of H₂O is accordingly,

$$C_w = 0.9975 \times 18.016 = 17.971 \text{ cal.} / \text{mole deg.}$$

Heat of Vaporization of Water, ΔH_v . ΔH_v is the heat of vaporization of liquid water into saturated vapor at the temperature specified, T, and at the total pressure equal to the vapor pressure of the liquid. The heat of vaporization varies slightly with the total pressure on the liquid by the amount of change of the PV term in the expression $\Delta H =$ $\Delta E + \Delta (PV)$. Over the pressure range employed (1 to 250 p.s.i.), this amounts to some 6 cal. per mole in the 10,000 cal. per mole ΔH_v ; hence its inclusion was omitted as being beyond the precision of present calculations. The heat of vaporization of water varies linearly with temperature throughout the range 25° to 43° C. to within the accuracy of the values shown in Keenan's steam tables (3). The expression $\Delta H_v = 10,500 + 10.0 (25 - T)$ (cal. per mole) represents the experimental values with a precision of 2 parts in 10,000 over the range.

Humidity of Gaseous H_2S Saturated with Water Vapor, h. Values of gas humidity are calculated from the behavior of H_2S gas and water vapor as determined by Selleck, Carmichael, and Sage (6). An analysis of the data of Selleck and others showed that the data on humidity could be represented to within experimental error analytically by the function,

$$\log h = \frac{-2123}{T_{k}} + 4.53693, \text{ at } 250 \text{ p.s.i.a.},$$

and that these values of h multiplied by 1.0155 give the humidity at 244 p.s.i.a. over the temperature range 30° to 43° C. Over the range 250 ± 20 p.s.i., the relation

$$h = \left(\frac{638.1 - p}{75.8}\right) \times 10^{-3} = h_{(250)} + \left(\frac{250 - p}{75.8}\right) \times 10^{-3} \frac{\text{mole H}_2\text{O}}{\text{mole H}_2\text{S}}$$

describes the changes of h with p to within 0.8%, hence

$$\frac{\partial h}{\partial p} = - \frac{10^{-3}}{75.8} \frac{\text{mole H}_2\text{O per mole H}_2\text{S}}{\text{p.s.i.}} ,$$

and

$$h_{T,p} = 3.298 \times 10^{-3} - (p) \frac{10^{-3}}{75.8} + 10^{(-2123/T_{h} + 4.53883)}$$

in the prescribed range. Data used to obtain this relation (6) are given in Table I.

Change of Enthalpy of Wet, Gaseous H_2S with Temperature. The rate of change of enthalpy of wet, gaseous H_2S with temperature, or in other words the effective molar heat capacity, $[\partial H_G/\partial T_k]_p$ of the gas is given, as shown earlier, by

$$C_{G} = \left[\frac{\partial H_{G}}{\partial T_{k}}\right]_{p} = C_{g} + (T - 25) \left[\left(\frac{\partial C_{g}}{\partial T_{k}}\right)_{p} + C_{w}\left(\frac{\partial h}{\partial T_{k}}\right)_{p}\right]$$
$$h\left[C_{w} + \left(\frac{\partial (\Delta H_{v})}{\partial T_{k}}\right)_{p}\right] + \Delta H_{v}\left(\frac{\partial h}{\partial T_{k}}\right)_{p}$$

Since

 $C_s = 8.19 + 1.66 \times 10^{-3} (T - 25), \text{ cal./deg. mole H}_2\text{S}$

$$\left(\frac{\partial C_{g}}{\partial T_{k}}\right)_{p} = 1.66 \times 10^{-3} \text{ cal./mole deg.}^{2}$$

and

 $C_{u} = 17.971 \text{ cal./deg. mole H}_{2}O$

$$h = 3.298 \times 10^{-3} - p \frac{10^{-3}}{75.8} + 10^{-2123/T_{h} + 4.53683}$$
 mole H₂O/mole H₂S

$$\left(\frac{\partial h}{\partial T_k}\right)_p = \frac{4889}{T_k^2} \times 10^{-2(20/T_k + 4.53863)} \frac{\text{mole H}_2\text{O}}{(\text{mole H}_2\text{S})(\text{deg.})}$$
$$= \frac{4889}{T_k^2} \times h_{(250\,p.\text{s.i.})}$$
$$\left(\frac{\partial h}{\partial p}\right)_T = -\frac{10^{-3}}{75.8} \frac{\text{mole H}_2\text{O}}{(\text{mole H}_2\text{S})(\text{p.s.i.})}$$

 $\Delta H_v = 10,500 + 10.0 (25 - T) \text{ cal./mole H}_2\text{O}$

$$\left[\frac{\partial(\Delta H_{\nu})}{\partial T_{k}}\right]_{p} = -10.0 \frac{\text{cal.}}{(\text{mole H}_{2}\text{O})(\text{deg.})}$$

then

$$\begin{bmatrix} \frac{\partial H_o}{\partial T_k} \end{bmatrix}_p = 8.19 + (T - 25) \begin{bmatrix} 0.00332 \\ + 17.971 \times \frac{4889}{T_k^2} \times 10^{-2123/T_k + 4.5986} \end{bmatrix}$$
$$+ \begin{bmatrix} 3.298 \times 10^{-3} - p \ \frac{10^{-3}}{75.8} + \ 10^{-2123/T_k + 4.5986} \end{bmatrix}$$
$$\times \begin{bmatrix} 17.971 - 10.0 \end{bmatrix} + \begin{bmatrix} 10,500 + 10.0 \ (25 - T) \end{bmatrix}$$
$$\times \frac{4889}{T_k^2} \times 10^{-2123/T_k + 4.59883}$$

in

or

$$\frac{cal.}{(mole H_2S)(deg.)}$$

$$\begin{bmatrix} \frac{\partial H_G}{\partial T_k} \end{bmatrix}_p = 8.19 + (T - 25) \begin{bmatrix} 0.00332 + \frac{87,860}{T_k^2} \times h_{(250)} \end{bmatrix} + h(7.971) + (10,750 - 10.0 \ T) \times \frac{4889}{T_k^2} \times h_{(250)}$$

Values are given in Table II.

Temp.		Pressure.	Humidity, h.		
° C.	° K.	P.S.I.A.	$Mole \ H_2O/Mole \ H_2S$		
37.8	310.9	100	0.01071		
		200	0.00602		
		244	0.00520 (interpolated)		
		250	0.00512		
		300	0.00462		
71.1	344.2	100	0.05340		
		200	0.02817		
		250	0.02343		
		244	0.0238 (interpolated)		
		300	0.02030		

Change of Enthalpy of Wet, Gaseous H_2S with Pressure. The rate of change of enthalpy of wet, gaseous H_2S with pressure is given by:

$$\begin{bmatrix} \frac{\partial H_g}{\partial p} \end{bmatrix}_T = \left(\frac{\partial H_g}{\partial p} \right)_T + C_w \left(T - 25 \right) \left(\frac{\partial h}{\partial p} \right)_T + \Delta H_v \left(\frac{\partial h}{\partial p} \right)_T$$
$$\left(\frac{\partial h}{\partial p} \right)_T = -\frac{10^{-3}}{75.8} \frac{\text{mole H}_2\text{O}}{(\text{mole H}_2\text{S})(\text{p.s.i.})}$$
$$\begin{bmatrix} \frac{\partial H_g}{\partial p} \end{bmatrix}_T = \text{Joule-Thompson expansion cooling of H}_2\text{S}$$

Hydrogen sulfide gas has a large Joule-Thompson coefficient, and cools considerably when expanded, at least at temperatures above 25° C. and pressures above 1 atm., as judged from the calculations of West (8). Selected values from West's tables were used to construct Table III which shows the variation of enthalpy with temperature and pressure. From these data, it was concluded that the change of enthalpy with pressure was constant over the pressure and temperature range of 15 to 300 p.s.i.a. and 25° to 50° C.—i.e., $[\partial H_{\rm g}/\partial p]_T = -1.051$ cal. per mole p.s.i. For a 6.0-p.s.i. pressure drop at about 38° C., the enthalpy change per mole is therefore $\Delta H = -6(-1.051) = +6.306$ cal. per mole at 37.78° C. The value of the coefficient $\Delta H/\Delta p$, for H₂S, by way of comparison, is about 10 times that for air, the latter having a value of -0.121 cal. per mole p.s.i.

Substitution of these values into the equation for the enthalpy change of wet gaseous H_2S with pressure gives:

$$\left[\frac{\partial H_{c}}{\partial p}\right]_{T} = -1.051 + 17.971 (T - 25) \left(\frac{-10^{-3}}{75.8}\right)$$
$$+ \left[10,500 + 10.0(25 - T)\right] \left(\frac{-10^{-3}}{75.8}\right)$$
$$= -1.1870 - 1.052 \times 10^{-4} T, \frac{\text{cal.}}{(\text{mole H}_{2}\text{S})(\text{p.s.i.})}$$

Table III. Change of Enthalpy of Dry,
Gaseous H ₂ S with Pressure

Temp.				Enthalpy		
		Pressure,	Pressure,	B.t.u.	Cal. per	
°F.	° C.	P.S.I.	Atm.	per lb.	mole	
80	26.67	14.7	1.0	273.7	5182.5	
80	26.67	147	10.0	265.5	5027.2	
80	26.67	294	20.0			
100	37.78	14.7	1.0	277.7	5258.2	
100	37.78	147	10.0	270.3	5118.1	
100	37.78	294	20.0	262.2	4964.7	
120	48.89	14.7	1.0	282.5	5349.1	
120	48.89	147	10.0	275.5	5216.6	
120	48.89	294	20.0	267.7	5068.9	

2
₹.
ŝ
تە
0
3
=
č
Š
I
ŝ
8
S C
Ō
to
ž
5
Ĕ
Š
č
÷
5
ß
ŝ
ŕ
s.
2
ĕ
Ð,
∢
5
ž
불.
ž
÷
ŧ
nd Enth
and Enth
y, and Enth
city, and Enth
oacity, and Enth
apacity, and Enth
Capacity, and Entl
at Capacity, and Enth
Heat Capacity, and Enth
r, Heat Capacity, and Enth
ity, Heat Capacity, and Enth
idity, Heat Capacity, and Enth
umidity, Heat Capacity, and Enth
Humidity, Heat Capacity, and Enth
, Humidity, Heat Capacity, and Enth
lity, Humidity, Heat Capacity, and Entt
bility, Humidity, Heat Capacity, and Enth
Iubility, Humidity, Heat Capacity, and Enth
Solubility, Humidity, Heat Capacity, and Enth
. Solubility, Humidity, Heat Capacity, and Enth
 Solubility, Humidity, Heat Capacity, and Enth
sle II. Solubility, Humidity, Heat Capacity, and Enth
able II. Solubility, Humidity, Heat Capacity, and Enth
Table II. Solubility, Humidity, Heat Capacity, and Enth
Table II. Solubility, Humidity, Heat Capacity, and Enth

$B_{c}{}^{d}$	$\begin{array}{c} 0.1386\\ 0.1386\\ 0.1386\\ 0.1386\\ 0.1386\\ 0.1386\end{array}$	$\begin{array}{c} 0.1387 \\ 0.1387 \\ 0.1387 \\ 0.1387 \\ 0.1387 \end{array}$	$\begin{array}{c} 0.1387\\ 0.1387\\ 0.1387\\ 0.1387\\ 0.1387\\ 0.1387\end{array}$	
b_L^d	0.0528 0.05403 0.05282 0.05282 0.05167	$\begin{array}{c} 0.05054 \\ 0.04946 \\ 0.04841 \\ \dot{0.04741} \\ \dot{0.04741} \end{array}$	$\begin{array}{c} 0.04642 \\ 0.04547 \\ 0.04456 \\ 0.04367 \\ 0.04367 \\ 0.04282 \end{array}$	
$\left[\left[rac{\partial H_{l}}{\partial p} ight]_{T}$	-0.4200 -0.4104 -0.3959 -0.3818 -0.3683	-0.3552 -0.3425 -0.3303 -0.3186	$\begin{array}{c} -0.3071 \\ -0.2960 \\ -0.2854 \\ -0.2750 \\ -0.2651 \end{array}$	2) for re for
$\left[\begin{bmatrix} \frac{\partial v_w}{\partial T_A} \\ \end{bmatrix}_p, \\ MI./Degree \\ 0.034 < JD^{-4} \\ 0.04 < JD^{-4} \\ \end{bmatrix}$	3.094×10^{-4} 3.124×10^{-4} 3.213×10^{-4} 3.301×10^{-4} 3.387×10^{-4}	$\begin{array}{c} 3.473 \times 10^{-4} \\ 3.557 \times 10^{-4} \\ 3.640 \times 10^{-4} \\ \hline 3.721 \times 10^{-4} \end{array}$	$\begin{array}{c} 3.801 \times 10^{-4} \\ 3.883 \times 10^{-4} \\ 3.961 \times 10^{-4} \\ 4.039 \times 10^{-4} \\ 4.117 \times 10^{-4} \end{array}$	uations given by (They are listed he
<i>v</i> _w , Ml.	1.00421	1.00610	1.00768	ts in the equilibrium terms.
$\left[\left[\begin{array}{c} \partial H_L \\ \partial T_k \end{array} \right]_p^c$	21.6780 21.5487 21.4259 21.3055 21.1914	21.0811 20.9752 20.8741 20.8741 20.7766	$\begin{array}{c} 20.6812\\ 20.5903\\ 20.5025\\ 20.4179\\ 20.3371\end{array}$	ury coefficien suntercurren ferences.
$\left(rac{\partial S}{\partial T_{\star}} ight)_{p}$ $ imes 10^{3}$	-0.533 -0.5762 -0.5595 -0.5430 -0.5273	-0.5121 -0.4975 -0.4834 -0.4698	-0.4564 -0.4436 -0.4312 -0.4192 -0.4077	<i>l</i> _c are necessa eedback in cc ice in later re
$\left[\begin{array}{c} \displaystyle rac{\partial H_G}{\partial p} \end{array} ight]_T$	-1.1902 -1.1903 -1.1904 -1.1905 -1.1906	-1.1907 -1.1908 -1.1909 -1.1909 -1.1910	-1.1911 -1.1912 -1.1913 -1.1914 -1.1915	$d^{d} b_{L}$ and H thermal f
$\left[\left[egin{array}{c} \partial H_{c} \ \partial T_{k} \ \partial T_{k} \end{array} ight]^{c}$	10.1500 10.2480 10.3494 10.4542 10.5634	$10.6771 \\10.7953 \\10.9179 \\11.0452 \\11.0452 \\$	$\begin{array}{c} 11.1767\\ 11.3142\\ 11.4559\\ 11.6045\\ 11.7564\end{array}$	
ΔH_{e}	10,450 10,440 10,420 10,410 10,410	$10,400 \\ 10,390 \\ 10,380 \\ 10,370 \\ 1$	$10,360 \\ 10,350 \\ 10,340 \\ 10,330 \\ 10,320 \\ 1$	
C, °	8.1983 8.2000 8.2016 8.2033 8.2033	8.2066 8.2083 8.2099 8.2112 8.2116	8.2132 8.2149 8.2166 8.2166 8.2182 8.2199	
$\left(rac{\partial h}{\partial T} ight)_p$ $ imes 10^3$	0.1818 0.1995 0.1995 0.2088 0.2185	0.2286 0.2391 0.2500 0.2590 0.2613	$\begin{array}{c} 0.2730\\ 0.2852\\ 0.2978\\ 0.3110\\ 0.3245\end{array}$	
T_k°	303.1 304.1 305.1 306.1 307.1	308.1 309.1 310.1 310.9 311.1	312.1 313.1 314.1 315.1 315.1	
S ⁶	$\begin{array}{c} 0.02534\\ 0.02475\\ 0.02419\\ 0.023633\\ 0.023633\\ 0.023100 \end{array}$	$\begin{array}{c} 0.022580\\ 0.022075\\ 0.021585\\ 0.02120\\ 0.02112\end{array}$	0.02065 0.020195 0.01976 0.01933 0.01933	
$h \times 10^{34}$	3.417 3.603 3.798 4.002 4.215	4.439 4.673 4.917 5.121 5.173	5.440 5.719 6.315 6.315 6.632	H ₂ S. ' H ₂ O.
Temp., ° C.	*****	35 36 37 38 38	39 40 43 43	Mole H ₂ O/mole Mole H ₂ S/mole Cal./mole degree

ENTHALPY OF AQUEOUS H_2S SOLUTIONS. The enthalpy of water saturated with H_2S is dependent on temperature and pressure. It is desired to evaluate those changes in enthalpy as the solution proceeds from one set of conditions to another in the towers.

 ΔH_L = enthalpy to bring 1 mole of pure H₂O from 25° C. to t, plus enthalpy to bring 1 mole of pure H₂O from its vapor pressure p'_0 at 25° C. to p, plus enthalpy change in raising S moles of H₂S from 25° C. to t plus enthalpy change in bring S moles of H₂S at t from 1 atm. to p, plus enthalpy of solution of S moles of H₂S in 1 mole of H₂O at p and t

$$\Delta H_{L} = C_{w}(t - 25) + \int_{p_{0}^{c}}^{p} \left(\frac{\partial H_{w}}{\partial p}\right)_{\tau} dp + S \times C_{s}(t - 25)$$
$$+ S \times \int_{p=1 \text{ atm.}}^{p} \left(\frac{\partial H_{s}}{\partial p}\right)_{\tau} dp + \int_{0}^{S} \Delta H_{s} dS$$

where

 $S = \text{mole } H_2S \text{ per mole } H_2O = \text{solubility of } H_2S \text{ in water}$

 ΔH_s = heat of solution in water of 1 mole H₂S at temperature t C_w = heat capacity of water, mean molar over range 25° C. to t

 C_s = heat capacity of H₂S, mean molar over range 25° C. to tt = liquid temperature, ° C.

 $H_{w} =$ enthalpy of liquid water

 H_g = enthalpy of dry gaseous H₂S

Now,

$$dH_L = \left[\frac{\partial H_L}{\partial T_k}\right]_p dt + \left[\frac{\partial H_L}{\partial p}\right]_{T_k} dp$$

By application of the first and second laws of thermodynamics

$$\left(\frac{\partial H_w}{\partial p}\right)_T = v_w - T_* \left(\frac{\partial v_w}{\partial T_*}\right)_B$$

where v_w is the molar volume of liquid water.

Since, in the region of interest, C_w , $(\partial H_g/\partial p)_T$, and $(\partial v_w/\partial T_k)_p$ are essentially independent of temperature and pressure; and C_g , $(\partial H_w/\partial p)_T$, ΔH_s , and v_w are essentially independent of pressure and solubility, we may write

$$\Delta H_{L} = C_{w}(t - 25) + \left[v_{w} - T_{k} \left(\frac{\partial v_{w}}{\partial T_{k}} \right)_{p} (p - p_{0}) \right]$$
$$+ S \left[\left(\frac{\partial H_{g}}{\partial p} \right)_{T} (p - 14.7) + C_{g}(t - 25) + \Delta H_{g} \right]$$

Hence

$$C_{L} = \left[\frac{\partial H_{L}}{\partial T_{k}}\right]_{p} = C_{w} + \frac{\partial S}{\partial T_{k}}$$

$$\left[\left(\frac{\partial H_{s}}{\partial p}\right)_{T} (p - 14.7) + C_{s}(t - 25) + \Delta H_{s}\right]$$

$$+ S\left[C_{s} + \left(\frac{\partial C_{s}}{\partial T_{k}}\right)_{p} (t - 25) + \left(\frac{\partial (\Delta H_{s})}{\partial T_{k}}\right)_{p}\right]$$

where

 C_L = effective molar heat capacity of the solution and

$$\begin{bmatrix} \frac{\partial H_L}{\partial p} \end{bmatrix}_{T} = \begin{bmatrix} v_w - T_k \left(\frac{\partial v_w}{\partial T_k} \right)_p \end{bmatrix} + \frac{\partial S}{\partial p} \\ \begin{bmatrix} \left(\frac{\partial H_{\epsilon}}{\partial p} \right)_T (p - 14.7) + C_{\epsilon}(t - 25) + \Delta H_{\epsilon} \end{bmatrix} + \left(\frac{\partial H_{\epsilon}}{\partial p} \right)_T S$$

The Heat of Solution of H_2S , ΔH_s . Examination of the data of Wright and Maass as summarized by Kelley (4)

permitted an evalution of the heat of solution of H_2S in water. In this connection, the Van't Hoff equation is useful:

$$\frac{d(\ln c)}{dT_{k}} = \frac{\Delta H_{*}}{RT_{k}^{2}} \qquad \text{or} \qquad \frac{d(R \ln c)}{d(1/T_{k})} = \Delta H_{*}$$

where c is the observed solubility at 1 atm.

Table IV gives the data of Wright and Maass. Table V gives data derived here from the data of Selleck, Carmichael, and Sage (6).

The values of the heat of solution obtained from both sources are plotted in Figure 2. The values of ΔH_s can be well described over the 5° to 80° C. range by the equation:

$$\Delta H_s = -5182.5 + 39.5 t^{\circ} \text{ C}.$$

and by this calculation would have the values -4005 and

Figure 2. Heat of solution of H₂S in water

-3612.5 cal. per mole at 30° and 40° C., respectively. A numerically decreasing heat of solvation of the H₂S molecule is indicated. It would appear that the formation of the H₂S-(H₂O)_x complex is favored by lower temperatures.

Solubility of H_2S in Water, S. A survey of the literature on the solubility of H_2S in water showed the determinations of Selleck, Carmichael, and Sage (6) to cover the range of pressures and temperatures required here. Their data in these ranges are summarized in Figure 3 and 4. Their data may be presented analytically to within experimental error over the temperature range 25° to 70° C. at 250 p.s.i.a. by the equation

$$\log S = \frac{935.00}{T_k} - 4.6810$$

and more broadly by

$$\log S = \frac{935.00}{T_k} - 7.07894 + \log p$$

over the pressure range 200 to 350 p.s.i.a., where

S = solubility of H₂S, mole H₂S/mole H₂O

 T_k = absolute temperature, ° K.

p = total system pressure, p.s.i.a.

(The expression $\log S = 935.00/T_k - 7.07729 + \log p_1$, where p_1 is the partial pressure of the H₂S, is applicable over a range from about 1 to 350 p.s.i.a., but is somewhat less convenient for present purposes.)

Change of Enthalpy with Temperature of Water Containing Dissolved H_2S . The rate of change of enthalpy with tem-

JOURNAL OF CHEMICAL AND ENGINEERING DATA

Table IV. Heat of Solution of H_2S in Water (Wright and Maass Data)							
t, ° C. 5 10 15 20 25 30 40 50 60	$T, \circ K.$ 278.1 283.1 293.1 298.1 303.1 313.1 323.1 333.1	$\begin{array}{c} 1/T_8 \times 10^3 \\ 3.59582 \\ 3.53232 \\ 3.47101 \\ 3.41180 \\ 3.35457 \\ 3.29924 \\ 3.19386 \\ 3.09501 \\ 3.00210 \end{array}$	$\begin{array}{c} -R\ln c\\ 3.429\\ 3.730\\ 4.023\\ 4.280\\ 4.537\\ 4.764\\ 5.158\\ 5.496\\ 5.781\end{array}$	$\begin{array}{c} \Delta(R \ln c) \ {\rm from} \\ T \ {\rm to} \ T + 10^{\circ} \ {\rm K}. \\ 0.594 \\ 0.550 \\ 0.514 \\ 0.484 \\ (227, \Delta T = 5^{\circ}) \\ 0.394 \\ 0.338 \\ 0.285 \\ \dots \end{array}$	$\Delta(1/T_k)$ 0.12481 0.12052 0.11626 0.11256 (0.05533) 0.10538 0.09885 0.09291 	$-\Delta H_s \times 4.75$ 4.56 4.42 4.29 (4.10 3.73 3.41 3.06 	10 ³ 9 3 1 95) 9 9 9 7
Table V. Calculations of Heat of Solution of H ₂ S in Water (From data of Selleck and others)							
Pressure, P.S.I.A. 250 250 250 250 250	Temp., °C. 37.8 71.1 104.4 137.8 171.1	Water Vapor Pressure, P.S.I.A. 0.949 4.74 17.188 49.20 117.99	H ₂ S Partial Pressure, P.S.I.A. 249.05 245.26 232.81 200.8 132.0	$\begin{array}{c} {\rm Soly.,}\\ S,{\rm Mole}/{\rm Mole}\\ {\rm H_2O}\\ 0.0219\\ 0.1297\\ 0.009856\\ 0.007587\\ 0.00464\underline{1} \end{array}$	$\begin{array}{c} Soly., \ Mole \\ H_2S/1000 \ G. \\ H_2O = 55.52 \cdot S \\ 1.1765 \\ 0.7201 \\ 0.5472 \\ 0.4212 \\ 0.2577 \\ \end{array}$	$c = \text{Soly. at} \\ 1 \text{ Atm., Mol} \\ /1000 \text{ G}. \text{ H}_2 \\ 0.069442 \\ 0.043160 \\ 0.034552 \\ 0.030834 \\ 0.028698 \\ 0.008698 \\ 0.008$	$e -\Delta H_s$ O Cal./Mole 3580 2330 1280 880 670
Table VI. Heat Capacity Ratio and Relative Thermal Capacities of Gaseous H ₂ S and Liquid H ₂ O Saturated with Each Other at 250 P.S.I.A.							
Temp., ° C. 30 31 32 33 34 35 36 37 38 39 40 41 42 43	C_L/C_G 2.13576 2.10272 2.07025 2.03798 2.00611 1.97442 1.94299 1.91191 1.88105 1.85038 1.81986 1.78968 1.75948 1.72987	$\begin{array}{c} \gamma \text{ at } L/G = 0.53\\ 1.11060\\ 1.09341\\ 1.07653\\ 1.05975\\ 1.04318\\ 1.02670\\ 1.01035\\ 0.99419\\ 0.97815\\ 0.96220\\ 0.94633\\ 0.93063\\ 0.91493\\ 0.89953 \end{array}$	$\begin{array}{cccc} 2 & \gamma \ {\rm at} \ L/G \\ & 1.067 \\ 1.051 \\ 1.035 \\ 1.018 \\ 1.003 \\ 0.987 \\ 0.971 \\ 0.955 \\ 0.940 \\ 0.925 \\ 0.909 \\ 0.894 \\ 0.879 \\ 0.864 \end{array}$	$ \begin{array}{c cccc} = 0.50 & \gamma \mbox{ at } L/C \\ 88 & 1.02 \\ 36 & 1.00 \\ 13 & 0.99 \\ 99 & 0.97 \\ 06 & 0.96 \\ 21 & 0.94 \\ 50 & 0.93 \\ 50 & 0.93 \\ 96 & 0.91 \\ 53 & 0.90 \\ 19 & 0.88 \\ 93 & 0.87 \\ 84 & 0.85 \\ 74 & 0.84 \\ 94 & 0.83 \end{array} $	$ \begin{array}{ccccc} F = 0.48 & \gamma \text{ at } I \\ 5516 & 0 \\ 9931 & 0 \\ 823 & 0 \\ 823 & 0 \\ 823 & 0 \\ 823 & 0 \\ 823 & 0 \\ 824 & 0 \\ 8264 & 0 \\ 264 & 0 \\ 264 & 0 \\ 264 & 0 \\ 818 & 0 \\ 818 & 0 \\ 8353 & 0 \\ 9905 & 0 \\ 9055 & 0 \\ 8034 & 0 \\ \end{array} $	//G = 0.46 .98245 .96725 .95232 .93747 .92281 .90823 .89378 .87948 .86528 .85117 .83714 .82325 .80936 .79574	γ at $L/G = 0.44$ 0.93973 0.92520 0.91091 0.89671 0.88269 0.86874 0.85492 0.84124 0.82766 0.81417 0.80074 0.7846 0.77417 0.76114

perature of water containing dissolved H_2S , or the effective molar heat capacity of the solution, C_L , is given as shown earlier, by

$$C_{L} = \left[\frac{\partial H_{L}}{\partial T_{k}}\right]_{p} = C_{w} + \frac{\partial S}{\partial T_{k}}$$

$$\times \left[\left(\frac{\partial H_{s}}{\partial p}\right)_{T} (p - 14.7) + C_{s}(t - 25) + \Delta H_{s}\right]$$

$$+ S\left[C_{s} + \left(\frac{\partial C_{s}}{\partial T_{k}}\right)_{p} (t - 25) + \left(\frac{\partial (\Delta H_{s})}{\partial T_{k}}\right)_{p}\right]$$

Since

 $C_{\rm g}\!=\!8.19+1.66\times10^{-3}~(t-25)$ in cal. per deg. mole $\rm H_2S$

$$\left(\frac{\partial C_s}{\partial T_k}\right)_{\rho} = 1.66 \times 10^{-3} \frac{\text{cal.}}{(\text{mole H}_2\text{S})(\text{deg.})}$$
$$C_w = 17.971_{(\text{deg.})(\text{mole H}_2\text{O})}$$
$$\log S = \frac{935.00}{T_k} - 7.07894 + \log p$$
$$S = p \times 10^{305/T_k} - 7.07894 + \log p$$
$$Mole H_2\text{O}$$
$$\frac{\partial S}{\partial T_k}\right)_{\rho} = -p \frac{2153}{T_k^2} \times 10^{305/T_k - 7.07894} \frac{\text{mole H}_2\text{S}}{(\text{mole H}_2\text{O})(\text{deg.})}$$
$$= -\frac{2153}{T_k^2} S$$

$$\left(\frac{\partial H_g}{\partial p}\right)_T = -1.051 \quad \frac{\text{cal.}}{(\text{mole})(\text{p.s.i.})}$$

 $\Delta H_s = -5182.5 + 39.5 t \text{ cal./mole } H_2S$

$$\left(\frac{\partial H_s}{\partial T_k}\right)_p = 39.5 \frac{\text{cal.}}{(\text{mole H}_2 \text{S})(\text{deg.})}$$

The known values can be substituted to obtain:

$$\begin{bmatrix} \frac{\partial H_L}{\partial T_k} \end{bmatrix}_p = 17.971 - \frac{2153 \cdot S}{T_k^2}$$

$$\times \begin{bmatrix} -1.051 (p - 14.7) + 8.19 (t - 25) + 1.66 \times 10^{-3} \\ (t - 25)^2 - 5182.5 + 39.5t \end{bmatrix} + S[8.19 + 1.66 \times 10^{-3} \\ (t - 25) + 1.66 \times 10^{-3} (t - 25) + 39.5] = 17.971 \\ - \frac{2153 \cdot S}{T_k^2} \begin{bmatrix} -5371.8 + 47.69t + 1.66 \times 10^{-3} (t - 25)^2 \\ -1.051p \end{bmatrix} + S[47.61 + 3.32 \times 10^{-3}t]$$

Change of Enthalpy with Pressure of Water Containing Dissolved H_2S . The rate of change of enthalpy with temperature of water containing dissolved H_2S is given, as shown earlier, by

$$\begin{bmatrix} \frac{\partial H_L}{\partial p} \end{bmatrix}_T = v_w - T_k \left(\frac{\partial v_w}{\partial T_k} \right)_p + \frac{\partial S}{\partial p} \begin{bmatrix} \left(\frac{\partial H_g}{\partial p} \right)_T (p - 14.7) + C_g(t - 25) + \Delta H_s \end{bmatrix} + S \begin{bmatrix} \frac{\partial H_g}{\partial p} \end{bmatrix}_T$$

Figure 3. Solubility of H₂S in H₂O

The new term in this expression may be evaluated as follows:

 $v_{u} = v_0 [1 - 5.3255 \times 10^{-5} t + 7.61532 \times 10^{-6} t^2]$

$$-4.37217 \times 10^{-8}t^{3} + 1.64322 \times 10^{-10}t^{4}$$
]

over the range 0° to 80° C. (5)

$$v_0 = (0.999841 \text{ g./cc.})^{-1} = 1.0001590 \text{ cc./g.}$$

= (18.016 g./mole) × 1.0001590 cc./g.
= 18.019 cc./mole H₂O
 $v_0 = 18.019[1 - 5.3255 \times 10^{-5}t + 7.61532 \times 10^{-6}t^2]$

$$-4.37217 \times 10^{-6}t^{3} + 1.64322 \times 10^{-10}t^{4}] \text{ cc./mole } \text{H}_2\text{O}$$

$$\begin{bmatrix} \frac{\partial v_w}{\partial T_k} \end{bmatrix}_{\rho} = 18.019 [-5.3255 \times 10^{-5} + 1.523064 \times 10^{-5}t \\ - 1.311651 \times 10^{-7} t^2 + 6.57288 \times 10^{-10} t^3] \text{ cc./(deg.)(mole H_2O)}$$

Conversion of the above volume units to heat units was done by using the gas constant:

$$R = 82.054$$
 cc. atm. deg.⁻¹ mole⁻¹ = 1.98647 cal. deg.⁻¹ mole⁻¹

= 82.054 cc. atm. \times 14.696 p.s.i./ atm. deg. $^{-1}$ mole $^{-1}$

Hence

$$\frac{1 \text{ cc.}}{\text{mole}} = 1.64733 \times 10^{-3} \frac{\text{cal.}}{\text{p.s.i. mole}}$$

$$v_0 = 18.019 \frac{\text{cc.}}{\text{mole H}_2\text{O}} \times 1.64733 \times 10^{-3} \frac{\text{cal.}}{\text{p.s.i. cc.}}$$

$$= 0.029683 \frac{\text{cal.}}{\text{p.s.i. mole H}_2\text{O}}$$

and

$$v_w = 0.029683[1 - 5.3255 \times 10^{-5}t + 7.61532 \times 10^{-6}t^2]$$

 $-4.37217 \times 10^{-8} t^3 + 1.64322 \times 10^{-10} t^4] \frac{\text{cal.}}{\text{p.s.i. mole H}_2\text{O}}$

and

$$\left[\frac{\partial v_{w}}{\partial T_{k}}\right]_{p} = 0.029683 \left[-5.3255 \times 10^{-5} + 1.523064 \times 10^{-5}t\right]$$
$$- 1.311651 \times 10^{-7}t^{2} + 6.57288 \times 10^{-10}t^{3}\right] \frac{\text{cal.}}{\text{p.s.i. deg. mole}}$$
$$\frac{\partial S}{\partial p} = 10^{305/T_{k} - 7.07394} = \frac{S}{p} \frac{\text{mole H}_{2}S}{(\text{mole H}_{2})(\text{p.s.i.})}$$

With these and terms evaluated earlier, the numerical value for the change of enthalpy of the solution with pressure is given as:

$$\begin{bmatrix} \frac{\partial H_L}{\partial p} \end{bmatrix}_{T} = 0.029683 \left[1 - 5.3255 \times 10^{-5}t + 7.61532 \times 10^{-6}t^2 - 4.372717 \times 10^{-6}t^3 + 1.64322 \times 10^{-10}t^4 \right] \frac{\text{cal.}}{(\text{p.s.i.})(\text{mole H}_2\text{O})}$$

$$= T_{*} \times 0.029683 \left[-5.3255 \times 10^{-5} + 1.523064 \times 10^{-5}t - 1.311651 \times 10^{-7}t^2 + 6.57288 \times 10^{-10}t^3 \right] \frac{\text{cal.}}{(\text{p.s.i.})(\text{mole H}_2\text{O})}$$

$$+ \left[10^{557/T_{k} - 7.07894} \right] \left[-5371.8 - 1.051p + 1.66 \times 10^{-3}(t - 25)^2 + 47.69t \right] \frac{\text{cal.}}{(\text{p.s.i.})(\text{mole H}_2\text{O})} - p \left[10^{935/T_{k} - 7.07894} \right] (1.051)$$

$$\text{cal.}$$

(p.s.i.) (mole H₂O)

JOURNAL OF CHEMICAL AND ENGINEERING DATA

Phase Relations for H₂S-H₂O System. The lower thermodynamically stable temperature limit of safe operation is that at which formation of ice-like crystals of H₂S hydrate occurs. A phase diagram of the H_2S-H_2O system is shown in Figure 1. The indicated phase diagram and the corresponding lower limit of the cold tower temperature are applicable only for the system pure H_2S-H_2O , and it would be possible in principle to lower the limit for the dual temperature process advantageous by adding a third component.

Relative Thermal Capacity of Gas and Liquid Streams, γ . The values of γ , the relative thermal capacity at selected temperatures and flow rates of the gas and liquid streams, were calculated from data in Table II. They are plotted in Figure 5 and shown in Table VI.

Potential Energy of Liquid and Gas Streams. The potential energy of a stream is equal to its weight times its elevation.

 $(P.E.)_{G} = (34.08 + 18.016h)(1.5)(z)(1/1400), p.c.u./pound-mole H_2S$

where 34.08 and 18.016 are the molecular weights of H₂S and H_2O , 1.5 feet are the tray spacing, z, the number of trays, and 1400 foot-pounds equals 1 p.c.u. The value of the humidity, h, varies from 0.0034 at 30° C. and 250 p.s.i.a. to 0.0058 at 40° C. and 244 p.s.i.a. Using an average value of h:

$$(P.E.)_{G} = 0.0366 z, p.c.u. / pound-mole H_2S$$

and

$$\frac{d(P.E.)_G}{dz} = 0.0366 \text{ p.c.u.} / (\text{pound-mole } H_2S)(\text{tray})$$

Variation of h over the range given would result in only 0.1% change in (P.E.)₆, and variation of S would result in 1.0% change in (P.E.)_L. Similarly

 $(P.E.)_L = (18.016 + 34.08S)(1.5)(z)(1/1400), p.c.u./pound-mole H_2O.$

S varies from 0.0197 at 40° C. and 244 p.s.i.a. to 0.0253 at 30° C. and 250 p.s.i.a. Using an average value of S:

 $(P.E.)_L = 0.0201 z, p.c.u. / pound-mole H_2O$

and

Figure 5. Variation of relative thermal capacity $\gamma = LC_L/GC_G$ with temperature and relative flow for countercurrent H₂S gas and H₂S at saturation equilibrium and at 250 p.s.i.a.

CORRECTION

In "Heat Transfer Characteristics of Fluorochemical Inert Liquid FC-75" [M.C. Marcellus, A.F. Spilhaus, Jr., and L.A. Troeltzsch, J. CHEM. ENG. DATA 6, 459 (1961),

$$\frac{d(\mathbf{P}.\mathbf{E}.)_L}{dz} = 0.0201, \text{ p.c.u.} / (\text{pound-mole } H_2 \mathbf{O}) (\text{tray})$$

For a 6-p.s.i. drop across 70 trays:

$$\frac{dp}{dz} = \frac{-6}{70} = -0.08571 \text{ p.s.i./tray}$$

Heat of Reaction for Isotope Excannge Reaction. The heat of the exchange can be estimated from the results of Suess (7). From these results, it can be calculated that the experimental determination of the equilibrium at elevated temperatures (350° to 500° C.) fits the heat of exchange shown:

 $H_2O(g) + D_2S(g) = D_2O(g) + H_2S(g); \Delta H_e^0 = -733 \text{ cal./mole } D$

$$K_{g} = \frac{[D_{2}O]_{g}}{[D_{2}S]_{g}} \frac{[H_{2}S]_{g}}{[H_{2}O]_{g}} = 0.662e^{1466/RT_{h}}$$

Theoretical calculations made by Geib and Suess indicate for reactions in the temperature range 0° to 100° C.:

 $H_2O(g) + HDS(g) = HDO(g) + H_2S(g); \Delta H_e^0 = -463 \text{ cal./mole } D$

$$K_{g} = 1.010e^{463/RT_{k}} = \frac{[\text{HDO}]_{g} [\text{H}_{2}\text{S}]_{g}}{[\text{H}_{2}\text{O}]_{g} [\text{HDS}]_{g}}$$

 $H_2O(l) + HDS(g) = HDO(l) + H_2S(g); \Delta H_e^0 = -593 \text{ cal./mole } D$

$$K_{L} = 0.871 e^{593/RT_{k}} = \frac{[\text{HDO}]_{l} [\text{H}_{2}\text{S}]_{g}}{[\text{H}_{2}\text{O}]_{l} [\text{HDS}]_{g}}$$

From these data the theoretical value $\Delta H_e^0 = -593$ cal./mole HDO would apply to the case where liquid water is contacted with gaseous H_2S .

LITERATURE CITED

- (1)Evans, W.H., Wagman, D.D., J. Research Natl. Bur. Standards 49, 141 (1952).
- Hull, H.L., Pohl, H.A., "Thermal Behavior of Countercurrent Equipment," E.I. du Pont de Nemours & Co., Wilmington, (2)Del., U.S. Atomic Energy Comm., Research and Develop. Rept. DP-97, 1954, declassified March 15, 1957.
- Keenan, J.H., Kayes, F.G., "Thermodynamic Properties of Steam," Wiley, New York, 1936. (3)
- (4)
- Kelley, K.K., U.S. Bur. Mines Bull. 406. Lange, N.A., "Handbook of Chemistry," 7th ed., Handbook (5) Publ., Sandusky, Ohio.
- Selleck, F.T., Carmichael, L.T., Sage, B.H., Ind. Eng. Chem. (6)44. 2219 (1952).
- Suess, A.E., FIAT Rev. Ger. Sci., Physical Chemistry (1939-(7)1946), pp. 22-3, U. S. Dept. Commerce, Office Tech. Services, Physical Chemistry, P.B. Rept. 95682, 1948.
- (8)West, J.R., Chem. Eng. Progr. 44, No. 4, 289 (1948).

RECEIVED for review June 29, 1960. Accepted April 20, 1961. Work supported by Atomic Energy Commission at Explosives Dept., Atomic Division, E.I. du Pont de Nemours & Co., under Contract AT(07-2)-1. Article written with permission of Atomic Energy Commission and E.I. du Pont De Nemours & Co. at the Plastic Laboratory, Princeton University, Princeton, N. J., under Signal Corps Contract No. D-36-039sc-78105; DA Project 3-99-15-108; ONR 356-375; WADD Project 7371.

the first column of the table on page 460 was misaligned horizontally and should be moved down one line, so that specific gravity is aligned with 1.77, 0.97, and 0.887.